enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.)

  4. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.

  5. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In fact, x ≡ b m n −1 m + a n m −1 n (mod mn) where m n −1 is the inverse of m modulo n and n m −1 is the inverse of n modulo m. Lagrange's theorem: If p is prime and f (x) = a 0 x d + ... + a d is a polynomial with integer coefficients such that p is not a divisor of a 0, then the congruence f (x) ≡ 0 (mod p) has at most d non ...

  6. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  7. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  8. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    So every quadratic residue (mod p) makes the first factor zero. Applying Lagrange's theorem again, we note that there can be no more than ⁠ p − 1 / 2 ⁠ values of a that make the first factor zero. But as we noted at the beginning, there are at least ⁠ p − 1 / 2 ⁠ distinct quadratic residues (mod p) (besides 0). Therefore, they are ...

  9. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Every pair of congruence relations for an unknown integer x, of the form x ≡ k (mod a) and x ≡ m (mod b), has a solution (Chinese remainder theorem); in fact the solutions are described by a single congruence relation modulo ab. The least common multiple of a and b is equal to their product ab, i.e. lcm(a, b) = ab. [4]