Search results
Results from the WOW.Com Content Network
VTPR is a group contribution equation of state. [3] This is class of prediction methods combine equations of state (mostly cubic) with activity coefficient models based on group contributions like UNIFAC. [4] The activity coefficient model is used to adapt the equation of state parameters for mixtures by a so-called mixing rule. [5]
The Lennard-Jones Potential is a mathematically simple model for the interaction between a pair of atoms or molecules. [3] [4] One of the most common forms is = [() ()] where ε is the depth of the potential well, σ is the finite distance at which the inter-particle potential is zero, r is the distance between the particles.
One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models.
Upload file; Search. ... Download as PDF; Printable version; In other projects ... The Wong–Sandler mixing rule is a thermodynamic mixing rule used for vapor ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
PSRK (short for Predictive Soave–Redlich–Kwong) [1] is an estimation method for the calculation of phase equilibria of mixtures of chemical components. The original goal for the development of this method was to enable the estimation of properties of mixtures containing supercritical components.
[1] [9] According to this, the mixing temperature is the weighted arithmetic mean of the temperatures of the two initial components. Richmann's rule of mixing can also be applied in reverse, for example, to the question of the ratio in which quantities of water of given temperatures must be mixed to obtain water of a desired temperature.
Vegard's law assumes that both components A and B in their pure form (i.e., before mixing) have the same crystal structure. Here, a A (1-x) B x is the lattice parameter of the solid solution, a A and a B are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution.