Search results
Results from the WOW.Com Content Network
The product operator for the product of a sequence is denoted by the capital Greek letter pi Π (in analogy to the use of the capital Sigma Σ as summation symbol). [1] For example, the expression ∏ i = 1 6 i 2 {\displaystyle \textstyle \prod _{i=1}^{6}i^{2}} is another way of writing 1 ⋅ 4 ⋅ 9 ⋅ 16 ⋅ 25 ⋅ 36 {\displaystyle 1 ...
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
Summation methods include Cesàro summation, generalized Cesàro (,) summation, Abel summation, and Borel summation, in order of applicability to increasingly divergent series. These methods are all based on sequence transformations of the original series of terms or of its sequence of partial sums.
In proving results in combinatorics several useful combinatorial rules or combinatorial principles are commonly recognized and used. The rule of sum, rule of product, and inclusion–exclusion principle are often used for enumerative purposes. Bijective proofs are utilized to demonstrate that two sets have the same number of elements.