enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  3. Scale-invariant feature transform - Wikipedia

    en.wikipedia.org/wiki/Scale-invariant_feature...

    An object is recognized in a new image by individually comparing each feature from the new image to this database and finding candidate matching features based on Euclidean distance of their feature vectors. From the full set of matches, subsets of keypoints that agree on the object and its location, scale, and orientation in the new image are ...

  4. 3D object recognition - Wikipedia

    en.wikipedia.org/wiki/3D_object_recognition

    To recognize an object in an arbitrary input image, the paper detects features, and then uses RANSAC to find the affine projection matrix which best fits the unified object model to the 2D scene. If this RANSAC approach has sufficiently low error, then on success, the algorithm both recognizes the object and gives the object's pose in terms of ...

  5. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Images, text Object recognition, scene recognition 2014 [15] [16] J. Xiao et al. ImageNet: Labeled object image database, used in the ImageNet Large Scale Visual Recognition Challenge: Labeled objects, bounding boxes, descriptive words, SIFT features 14,197,122 Images, text Object recognition, scene recognition 2009 (2014) [17] [18] [19] J ...

  6. Outline of object recognition - Wikipedia

    en.wikipedia.org/wiki/Outline_of_object_recognition

    Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.

  7. Foreground detection - Wikipedia

    en.wikipedia.org/wiki/Foreground_detection

    The following analyses make use of the function of V(x,y,t) as a video sequence where t is the time dimension, x and y are the pixel location variables. e.g. V(1,2,3) is the pixel intensity at (1,2) pixel location of the image at t = 3 in the video sequence.

  8. Geometric feature learning - Wikipedia

    en.wikipedia.org/wiki/Geometric_feature_learning

    The input is a feature vector and the output is 1 which means successfully detect the object or 0 otherwise. The main point of this learning approach is collecting representative elements which can represent the object through a function and testing by recognising an object from image to find the representation with high probability.

  9. Object categorization from image search - Wikipedia

    en.wikipedia.org/wiki/Object_categorization_from...

    In other words, object categorization from image search is one component of the system. OPTIMOL, for example, uses a classifier trained on images collected during previous iterations to select additional images for the returned dataset. Examples of CBIR methods that model object categories from image search are: Fergus et al., 2004 [5]