enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    The above is obtained using a second order approximation, following the method used in estimating the first moment. It will be a poor approximation in cases where () is highly non-linear. This is a special case of the delta method.

  3. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  4. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...

  5. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  6. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    This shows that the sample mean and sample variance are independent. This can also be shown by Basu's theorem, and in fact this property characterizes the normal distribution – for no other distribution are the sample mean and sample variance independent. [3]

  7. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    Saw et al extended Chebyshev's inequality to cases where the population mean and variance are not known and may not exist, but the sample mean and sample standard deviation from N samples are to be employed to bound the expected value of a new drawing from the same distribution. [30] The following simpler version of this inequality is given by ...

  8. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    where n is the sample size, N is the population size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. A computationally simpler but slightly less accurate version of this estimator is

  9. Irwin–Hall distribution - Wikipedia

    en.wikipedia.org/wiki/Irwin–Hall_distribution

    By the Central Limit Theorem, as n increases, the Irwin–Hall distribution more and more strongly approximates a Normal distribution with mean = / and variance = /.To approximate the standard Normal distribution () = (=, =), the Irwin–Hall distribution can be centered by shifting it by its mean of n/2, and scaling the result by the square root of its variance: