Search results
Results from the WOW.Com Content Network
The AND gate is a basic digital logic gate that implements the logical conjunction (∧) from mathematical logic – AND gates behave according to their truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If all of the inputs to the AND gate are not HIGH, a LOW (0) is outputted.
The gating signal acts as a control mechanism, determining when the main signal can pass through the gate and when it is blocked. The gating signal can be generated by various means, such as an external trigger, a specific voltage level, or a specific frequency range.
There are many offshoots of the original 7432 OR gate, all having the same pinout but different internal architecture, allowing them to operate in different voltage ranges and/or at higher speeds. In addition to the standard 2-input OR gate, 3- and 4-input OR gates are also available. In the CMOS series, these are: 4075: triple 3-input OR gate
OR-AND-invert gates or OAI-gates are logic gates comprising OR gates followed by a NAND gate. ... Symbol for an 2-1 OAI-gate. The OR gate has the inputs A and B.
Fan-in is the number of inputs a logic gate can handle. [1] For instance the fan-in for the AND gate shown in the figure is 3. [2] Physical logic gates with a large fan-in tend to be slower than those with a small fan-in. This is because the complexity of the input circuitry increases the input capacitance of the device.
An input-consuming logic gate L is reversible if it meets the following conditions: (1) L(x) = y is a gate where for any output y, there is a unique input x; (2) The gate L is reversible if there is a gate L´(y) = x which maps y to x, for all y. An example of a reversible logic gate is a NOT, which can be described from its truth table below:
The classical analog of the CNOT gate is a reversible XOR gate. How the CNOT gate can be used (with Hadamard gates) in a computation.. In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer.
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of the negation of the OR operator.