Search results
Results from the WOW.Com Content Network
If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem. If the characteristic function φ X of a random variable X is integrable, then F X is absolutely continuous, and therefore X has a probability density function.
Let be a discrete random variable with probability mass function depending on a parameter .Then the function = = (=),considered as a function of , is the likelihood function, given the outcome of the random variable .
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
If g is a general function, then the probability that g(X) is valued in a set of real numbers K equals the probability that X is valued in g −1 (K), which is given by (). Under various conditions on g , the change-of-variables formula for integration can be applied to relate this to an integral over K , and hence to identify the density of g ...
Absolutely continuous probability distributions can be described in several ways. The probability density function describes the infinitesimal probability of any given value, and the probability that the outcome lies in a given interval can be computed by integrating the probability density function over that interval. [4]
In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...
In probability theory and statistics, the factorial moment generating function (FMGF) of the probability distribution of a real-valued random variable X is defined as = [] for all complex numbers t for which this expected value exists.
In mathematics, the term "characteristic function" can refer to any of several distinct concepts: The indicator function of a subset , that is the function 1 A : X → { 0 , 1 } , {\displaystyle \mathbf {1} _{A}\colon X\to \{0,1\},} which for a given subset A of X , has value 1 at points of A and 0 at points of X − A .