Search results
Results from the WOW.Com Content Network
The reciprocal function: y = 1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
Reciprocal polynomial, a polynomial obtained from another polynomial by reversing its coefficients; Reciprocal rule, a technique in calculus for calculating derivatives of reciprocal functions; Reciprocal spiral, a plane curve; Reciprocal averaging, a statistical technique for aggregating categorical data
In geometry, a pole and polar are respectively a point and a line that have a unique reciprocal relationship with respect to a given conic section. Polar reciprocation in a given circle is the transformation of each point in the plane into its polar line and each line in the plane into its pole.
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...
The ratio is called coefficient of proportionality (or proportionality constant) and its reciprocal is known as constant of normalization (or normalizing constant). Two sequences are inversely proportional if corresponding elements have a constant product, also called the coefficient of proportionality.
Reciprocation (geometry), an operation with circles that involves transforming each point in plane into its polar line and each line in the plane into its pole; Reciprocation, application of the reciprocal function, see multiplicative inverse
In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem [1] or the upside down Pythagorean theorem [2]) is as follows: [3] Let A, B be the endpoints of the hypotenuse of a right triangle ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then
Reciprocal polynomials, the coefficients of the remainder polynomial are the bits of the CRC; Reciprocal square root; Reciprocity (projective geometry), a collineation from a projective space onto its dual space, taking points to hyperplanes (and vice versa) and preserving incidence; Frobenius reciprocity, from group representation theory