Search results
Results from the WOW.Com Content Network
A true 13×5 triangle cannot be created from the given component parts. The four figures (the yellow, red, blue and green shapes) total 32 units of area. The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = 13×5 / 2 = 32.5 units.
However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...
The horizon in the photograph is on the horizontal line dividing the lower third of the photo from the upper two-thirds. The tree is at the intersection of two lines, sometimes called a power point [1] or a crash point. [2] The rule of thirds is a rule of thumb for composing visual art such as designs, films, paintings, and photographs. [3]
The second fraction, three quarters, is three times as large as one quarter, so two thirds of three quarters is three times as large as two thirds of one quarter. Thus two thirds times three quarters is six twelfths. A short cut for multiplying fractions is called cancellation. Effectively the answer is reduced to lowest terms during ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The volumes of such polyhedra may be computed by subdividing the polyhedron into smaller pieces (for example, by triangulation). For example, the volume of a Platonic solid can be computed by dividing it into congruent pyramids, with each pyramid having a face of the polyhedron as its base and the centre of the polyhedron as its apex.
All even-sided polygons have two simple reflective forms, one with lines of reflections through vertices, and one through edges. For an arbitrary shape, the axiality of the shape measures how close it is to being bilaterally symmetric. It equals 1 for shapes with reflection symmetry, and between two-thirds and 1 for any convex shape.
For a semicircle with a diameter of a + b, the length of its radius is the arithmetic mean of a and b (since the radius is half of the diameter). The geometric mean can be found by dividing the diameter into two segments of lengths a and b, and then connecting their common endpoint to the semicircle with a segment perpendicular to the diameter ...