Search results
Results from the WOW.Com Content Network
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
Singmaster's conjecture is a conjecture in combinatorial number theory, named after the British mathematician David Singmaster who proposed it in 1971. It says that there is a finite upper bound on the multiplicities of entries in Pascal's triangle (other than the number 1, which appears infinitely many times).
The earliest extant Chinese illustration of 'Pascal's triangle' is from Yang's book Xiángjiě Jiǔzhāng Suànfǎ (詳解九章算法) [1] of 1261 AD, in which Yang acknowledged that his method of finding square roots and cubic roots using "Yang Hui's Triangle" was invented by mathematician Jia Xian [2] who expounded it around 1100 AD, about 500 years before Pascal.
In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix , an upper-triangular matrix , or a symmetric matrix .
Pascaline (also known as the arithmetic machine or Pascal's calculator) is a mechanical calculator invented by Blaise Pascal in 1642. Pascal was led to develop a calculator by the laborious arithmetical calculations required by his father's work as the supervisor of taxes in Rouen , France. [ 2 ]
The number of claims N is a random variable, which is said to have a "claim number distribution", and which can take values 0, 1, 2, .... etc..For the "Panjer recursion", the probability distribution of N has to be a member of the Panjer class, otherwise known as the (a,b,0) class of distributions.
In philosophy, Pascal's mugging is a thought experiment demonstrating a problem in expected utility maximization. A rational agent should choose actions whose outcomes, when weighted by their probability, have higher utility .
Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was formulated by Blaise Pascal in a note written in 1639 when he was 16 years old and published the following year as a broadside titled "Essay pour les coniques. Par B. P." [1] Pascal's theorem is a special case of the Cayley–Bacharach theorem.