enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  4. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  5. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Slope: = = ⁡ This gives an exact value for the slope of a straight line. If the function is not linear, however, then the change in divided by the change in varies. The difference quotient give an exact meaning to the notion of change in output with respect to change in input.

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    If f has an incomplete domain, it is possible for Newton's method to send the iterates outside of the domain, so that it is impossible to continue the iteration. [19] For example, the natural logarithm function f ( x ) = ln x has a root at 1, and is defined only for positive x .

  7. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    Similarly, when dealing with complex variables, a critical point is a point in the function's domain where its derivative is equal to zero (or the function is not holomorphic). [3] [4] Likewise, for a function of several real variables, a critical point is a value in its domain where the gradient norm is equal to zero (or undefined). [5]

  8. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.

  9. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    Branch points are generally the result of a multi-valued function, such as or ⁡ (), which are defined within a certain limited domain so that the function can be made single-valued within the domain. The cut is a line or curve excluded from the domain to introduce a technical separation between discontinuous values of the function.