Search results
Results from the WOW.Com Content Network
The closely related Dido's problem asks for a region of the maximal area bounded by a straight line and a curvilinear arc whose endpoints belong to that line. It is named after Dido, the legendary founder and first queen of Carthage. The solution to the isoperimetric problem is given by a circle and was known already in Ancient Greece. However ...
An isochoric process is exemplified by the heating or the cooling of the contents of a sealed, inelastic container: The thermodynamic process is the addition or removal of heat; the isolation of the contents of the container establishes the closed system; and the inability of the container to deform imposes the constant-volume condition.
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]
The work done in a process is the area beneath the process path on a P-V diagram. Figure 2 If the process is isobaric, then the work done on the piston is easily calculated. For example, if the gas expands slowly against the piston, the work done by the gas to raise the piston is the force F times the distance d.
A global isometry, isometric isomorphism or congruence mapping is a bijective isometry. Like any other bijection, a global isometry has a function inverse. The inverse of a global isometry is also a global isometry. Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y.
The problem is a differential equation of the form [()] + = for an unknown function y on an interval [a, b], satisfying general homogeneous Robin boundary conditions {() + ′ ′ = + ′ ′ =. The functions p, q, and w are given in advance, and the problem is to find the function y and constants λ for which the equation has a solution. The ...
Arnold–Beltrami–Childress flow – an exact solution of the incompressible Euler equations. Two solutions of the three-dimensional Euler equations with cylindrical symmetry have been presented by Gibbon, Moore and Stuart in 2003. [29] These two solutions have infinite energy; they blow up everywhere in space in finite time.
A polytropic process is a thermodynamic process that obeys the relation: = where p is the pressure , V is volume , n is the polytropic index , and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer.