enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The special case of Legendre's formula for = gives the number of trailing zeros in the decimal representation of the factorials. [57] According to this formula, the number of zeros can be obtained by subtracting the base-5 digits of from , and dividing the result by four. [58]

  3. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Now the function + is unimodal, with maximum value zero. Locally around zero, it looks like − t 2 / 2 {\displaystyle -t^{2}/2} , which is why we are able to perform Laplace's method. In order to extend Laplace's method to higher orders, we perform another change of variables by 1 + t − e t = − τ 2 / 2 {\displaystyle 1+t-e^{t}=-\tau ^{2}/2} .

  4. Empty product - Wikipedia

    en.wikipedia.org/wiki/Empty_product

    For example, the empty products 0! = 1 (the factorial of zero) and x 0 = 1 shorten Taylor series notation (see zero to the power of zero for a discussion of when x = 0). Likewise, if M is an n × n matrix, then M 0 is the n × n identity matrix , reflecting the fact that applying a linear map zero times has the same effect as applying the ...

  5. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    The ratio of the factorial!, that counts all permutations of an ordered set S with cardinality, and the subfactorial (a.k.a. the derangement function) !, which counts the amount of permutations where no element appears in its original position, tends to as grows.

  6. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  7. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    The ordinary factorial, when extended to the gamma function, has a pole at each negative integer, preventing the factorial from being defined at these numbers. However, the double factorial of odd numbers may be extended to any negative odd integer argument by inverting its recurrence relation!! = ()!! to give !! = (+)!! +.

  8. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    More recent results providing Jacobi-type J-fractions that generate the single factorial function and generalized factorial-related products lead to other new congruence results for the Stirling numbers of the first kind. [13] For example, working modulo we can prove that

  9. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]