enow.com Web Search

  1. Ad

    related to: shannon's formula entropy difference equation solution worksheet printable

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  3. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  4. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    Information-theoretic analysis of communication systems that incorporate feedback is more complicated and challenging than without feedback. Possibly, this was the reason C.E. Shannon chose feedback as the subject of the first Shannon Lecture, delivered at the 1973 IEEE International Symposium on Information Theory in Ashkelon, Israel.

  5. Quantities of information - Wikipedia

    en.wikipedia.org/wiki/Quantities_of_information

    Although, in both cases, mutual information expresses the number of bits of information common to the two sources in question, the analogy does not imply identical properties; for example, differential entropy may be negative. The differential analogies of entropy, joint entropy, conditional entropy, and mutual information are defined as follows:

  6. Binary entropy function - Wikipedia

    en.wikipedia.org/wiki/Binary_entropy_function

    Entropy of a Bernoulli trial (in shannons) as a function of binary outcome probability, called the binary entropy function.. In information theory, the binary entropy function, denoted ⁡ or ⁡ (), is defined as the entropy of a Bernoulli process (i.i.d. binary variable) with probability of one of two values, and is given by the formula:

  7. Shannon (unit) - Wikipedia

    en.wikipedia.org/wiki/Shannon_(unit)

    The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...

  8. Entropic uncertainty - Wikipedia

    en.wikipedia.org/wiki/Entropic_uncertainty

    Hirschman [1] explained that entropy—his version of entropy was the negative of Shannon's—is a "measure of the concentration of [a probability distribution] in a set of small measure." Thus a low or large negative Shannon entropy means that a considerable mass of the probability distribution is confined to a set of small measure.

  9. Conditional entropy - Wikipedia

    en.wikipedia.org/wiki/Conditional_entropy

    In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .

  1. Ad

    related to: shannon's formula entropy difference equation solution worksheet printable