enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    There will be an intersection if 0t ≤ 1 and 0 ≤ u ≤ 1. The intersection point falls within the first line segment if 0t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment ...

  3. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil. In any affine space (including a Euclidean space) the set of lines parallel to a given line (sharing the same direction) is also called a pencil, and the vertex of each pencil of parallel lines is a distinct point at ...

  4. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.

  5. Nullcline - Wikipedia

    en.wikipedia.org/wiki/Nullcline

    The equilibrium points of the system are located where all of the nullclines intersect. In a two-dimensional linear system , the nullclines can be represented by two lines on a two-dimensional plot; in a general two-dimensional system they are arbitrary curves.

  6. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let l 1 = [a 1, b 1, c 1] and l 2 = [a 2, b 2, c 2] be a pair of distinct lines. Then the intersection of lines l 1 and l 2 is point a P = (x 0, y 0, z 0) that is the simultaneous solution (up to a scalar factor) of the system of linear equations: a 1 x + b 1 y + c 1 z = 0 and a 2 x + b 2 y + c 2 z = 0. The solution of this system gives: x 0 ...

  7. Bentley–Ottmann algorithm - Wikipedia

    en.wikipedia.org/wiki/Bentley–Ottmann_algorithm

    When multiple line segments intersect at the same point, create and process a single event point for that intersection. The updates to the binary search tree caused by this event may involve removing any line segments for which this is the right endpoint, inserting new line segments for which this is the left endpoint, and reversing the order ...

  8. Intersection curve - Wikipedia

    en.wikipedia.org/wiki/Intersection_curve

    It is an easy task to determine the intersection points of a line with a quadric (i.e. line-sphere); one only has to solve a quadratic equation. So, any intersection curve of a cone or a cylinder (they are generated by lines) with a quadric consists of intersection points of lines and the quadric (see pictures).

  9. Line at infinity - Wikipedia

    en.wikipedia.org/wiki/Line_at_infinity

    Every line intersects the line at infinity at some point. The point at which the parallel lines intersect depends only on the slope of the lines, not at all on their y-intercept. In the affine plane, a line extends in two opposite directions. In the projective plane, the two opposite directions of a line meet each other at a point on the line ...