Search results
Results from the WOW.Com Content Network
This logarithmic number of operations is to be compared with the trivial algorithm which requires n − 1 multiplications. This algorithm is not tail-recursive. This implies that it requires an amount of auxiliary memory that is roughly proportional to the number of recursive calls -- or perhaps higher if the amount of data per iteration is ...
[1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. [3] The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite ...
This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib( n ), which returns the n th Fibonacci number , is defined with the recursion equations
For example, the formal definition of the natural numbers by the Peano axioms can be described as: "Zero is a natural number, and each natural number has a successor, which is also a natural number." [ 2 ] By this base case and recursive rule, one can generate the set of all natural numbers.
The primitive recursive functions are closely related to mathematical finitism, and are used in several contexts in mathematical logic where a particularly constructive system is desired. Primitive recursive arithmetic (PRA), a formal axiom system for the natural numbers and the primitive recursive functions on them, is often used for this purpose.
The primitive recursive functions are a subset of the total recursive functions, which are a subset of the partial recursive functions. For example, the Ackermann function can be proven to be total recursive, and to be non-primitive. Primitive or "basic" functions: Constant functions C k n: For each natural number n and every k
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation.Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .