enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams, or to collect them into one discharge stream, such as in fuel cells, heat exchangers, radial flow reactors, hydronics, fire protection, and irrigation. Manifolds can usually be ...

  3. Template:Kosinski Differential Manifolds 2007 - Wikipedia

    en.wikipedia.org/wiki/Template:Kosinski...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate

  4. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    The notion of a differentiable manifold refines that of a manifold by requiring the functions that transform between charts to be differentiable. In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus.

  5. Immersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Immersion_(mathematics)

    If M is an m-dimensional manifold and N is an n-dimensional manifold then for an immersion f : M → N in general position the set of k-tuple points is an (n − k(n − m))-dimensional manifold. Every embedding is an immersion without multiple points (where k > 1). Note, however, that the converse is false: there are injective immersions that ...

  6. Submersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Submersion_(mathematics)

    Submersions are also well-defined for general topological manifolds. [3] A topological manifold submersion is a continuous surjection f : M → N such that for all p in M, for some continuous charts ψ at p and φ at f(p), the map ψ −1 ∘ f ∘ φ is equal to the projection map from R m to R n, where m = dim(M) ≥ n = dim(N).

  7. Stochastic analysis on manifolds - Wikipedia

    en.wikipedia.org/wiki/Stochastic_analysis_on...

    In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis (the extension of calculus to stochastic processes ) and of differential geometry .

  8. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    There are two usual ways to give a classification: explicitly, by an enumeration, or implicitly, in terms of invariants. For instance, for orientable surfaces, the classification of surfaces enumerates them as the connected sum of tori, and an invariant that classifies them is the genus or Euler characteristic.

  9. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...