enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shell theorem - Wikipedia

    en.wikipedia.org/wiki/Shell_theorem

    The gravitational field of a spherically symmetric mass distribution like a mass point, a spherical shell or a homogeneous sphere must also be spherically symmetric. If n ^ {\displaystyle {\hat {\mathbf {n} }}} is a unit vector in the direction from the point of symmetry to another point the gravitational field at this other point must therefore be

  3. Chasles' theorem (gravity) - Wikipedia

    en.wikipedia.org/wiki/Chasles'_theorem_(gravity)

    In gravitation, Chasles' theorem says that the Newtonian gravitational attraction of a spherical shell, outside of that shell, is equivalent mathematically to the attraction of a point mass. [1] The theorem is conventionally known as Newton's shell theorem , but is attributed to Michel Chasles (1793–1880) by Benjamin Peirce .

  4. Birkhoff's theorem (relativity) - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_theorem...

    The intuitive idea of Birkhoff's theorem is that a spherically symmetric gravitational field should be produced by some massive object at the origin; if there were another concentration of mass–energy somewhere else, this would disturb the spherical symmetry, so we can expect the solution to represent an isolated object. That is, the field ...

  5. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point. Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field. Gauss's law for ...

  6. Centers of gravity in non-uniform fields - Wikipedia

    en.wikipedia.org/wiki/Centers_of_gravity_in_non...

    In a non-uniform field, gravitational effects such as potential energy, force, and torque can no longer be calculated using the center of mass alone. In particular, a non-uniform gravitational field can produce a torque on an object, even about an axis through the center of mass. The center of gravity seeks to explain this effect.

  7. Gravitoelectromagnetism - Wikipedia

    en.wikipedia.org/wiki/Gravitoelectromagnetism

    Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.

  8. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  9. Shell collapsar - Wikipedia

    en.wikipedia.org/wiki/Shell_Collapsar

    A shell collapsar is void inside [3] apart from intense gravitational field energy there. According to Newton's shell theorem, the acceleration of gravity in the center of each celestial body is zero and rises to its surface (cf. gravitational field in the interior of the Earth (PREM)). Without acceleration of gravity, the curvature of ...