enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  3. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    Graphical rate laws do, however, maintain that intuitive presentation of linearized data, such that visual inspection of the plot can provide mechanistic insight regarding the reaction at hand. The basis for a graphical rate law rests on the rate (v) vs. substrate concentration ([S]) plots

  4. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to

  5. Reactions on surfaces - Wikipedia

    en.wikipedia.org/wiki/Reactions_on_surfaces

    The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be: Limiting step: adsorption/desorption

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.

  7. Law of reciprocal proportions - Wikipedia

    en.wikipedia.org/wiki/Law_of_reciprocal_proportions

    This ratio of 1.19 obeys the law because it is a simple fraction (1/3) of 3.58. (This is because it corresponds to the formula ICl 3, which is one known compound of iodine and chlorine.) Similarly, hydrogen, carbon, and oxygen follow the law of reciprocal proportions. The acceptance of the law allowed tables of element equivalent weights to be ...

  8. Collision theory - Wikipedia

    en.wikipedia.org/wiki/Collision_theory

    The flux of the diffusive molecules follows Fick's laws of diffusion. For particles in a solution, an example model to calculate the collision frequency and associated coagulation rate is the Smoluchowski coagulation equation proposed by Marian Smoluchowski in a seminal 1916 publication. [4]

  9. Onsager reciprocal relations - Wikipedia

    en.wikipedia.org/wiki/Onsager_reciprocal_relations

    The rate of entropy production for the above simple example uses only two entropic forces, and a 2×2 Onsager phenomenological matrix. The expression for the linear approximation to the fluxes and the rate of entropy production can very often be expressed in an analogous way for many more general and complicated systems.