enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.

  3. Integration by reduction formulae - Wikipedia

    en.wikipedia.org/wiki/Integration_by_reduction...

    To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.

  4. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    The definite integral inputs a function and outputs a number, which gives the algebraic sum of areas between the graph of the input and the x-axis. The technical definition of the definite integral involves the limit of a sum of areas of rectangles, called a Riemann sum. [49]: 282 A motivating example is the distance traveled in a given time.

  5. Line integral - Wikipedia

    en.wikipedia.org/wiki/Line_integral

    A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    To compute integrals in multiple dimensions, one approach is to phrase the multiple integral as repeated one-dimensional integrals by applying Fubini's theorem (the tensor product rule). This approach requires the function evaluations to grow exponentially as the number of dimensions increases.

  8. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Thus, the integral of the velocity function (the derivative of position) computes how far the car has traveled (the net change in position). The first fundamental theorem says that the value of any function is the rate of change (the derivative) of its integral from a fixed starting point up to any chosen end point.

  9. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]