enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobson radical - Wikipedia

    en.wikipedia.org/wiki/Jacobson_radical

    For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements rR such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...

  3. Radical of a ring - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_ring

    If R is commutative, the Jacobson radical always contains the nilradical. If the ring R is a finitely generated Z-algebra, then the nilradical is equal to the Jacobson radical, and more generally: the radical of any ideal I will always be equal to the intersection of all the maximal ideals of R that contain I. This says that R is a Jacobson ring.

  4. Jacobson ring - Wikipedia

    en.wikipedia.org/wiki/Jacobson_ring

    R is a Jacobson ring; Every prime ideal of R is an intersection of maximal ideals. Every radical ideal is an intersection of maximal ideals. Every Goldman ideal is maximal. Every quotient ring of R by a prime ideal has a zero Jacobson radical. In every quotient ring, the nilradical is equal to the Jacobson radical.

  5. Nakayama's lemma - Wikipedia

    en.wikipedia.org/wiki/Nakayama's_lemma

    The resulting theorem is sometimes known as the Jacobson–Azumaya theorem. [13] Let J(R) be the Jacobson radical of R. If U is a right module over a ring, R, and I is a right ideal in R, then define U·I to be the set of all (finite) sums of elements of the form u·i, where · is simply the action of R on U. Necessarily, U·I is a submodule of U.

  6. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    The Jacobson radical of [[]] is the ideal generated by ... These formal power series over R form the Magnus ring over R. [9] [10] On a semiring

  7. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    The concept of the Jacobson radical of a ring; that is, the intersection of all right (left) annihilators of simple right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by ...

  8. Hopkins–Levitzki theorem - Wikipedia

    en.wikipedia.org/wiki/Hopkins–Levitzki_theorem

    A ring R (with 1) is called semiprimary if R/J(R) is semisimple and J(R) is a nilpotent ideal, where J(R) denotes the Jacobson radical. The theorem states that if R is a semiprimary ring and M is an R-module, the three module conditions Noetherian, Artinian and "has a composition series" are equivalent. Without the semiprimary condition, the ...

  9. Radical of an ideal - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_ideal

    It is trivial to show = (using the basic property =), but we give some alternative methods: [clarification needed] The radical corresponds to the nilradical of the quotient ring = [,] / (), which is the intersection of all prime ideals of the quotient ring. This is contained in the Jacobson radical, which is the intersection of all maximal ...