Search results
Results from the WOW.Com Content Network
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
If R is commutative, the Jacobson radical always contains the nilradical. If the ring R is a finitely generated Z-algebra, then the nilradical is equal to the Jacobson radical, and more generally: the radical of any ideal I will always be equal to the intersection of all the maximal ideals of R that contain I. This says that R is a Jacobson ring.
R is a Jacobson ring; Every prime ideal of R is an intersection of maximal ideals. Every radical ideal is an intersection of maximal ideals. Every Goldman ideal is maximal. Every quotient ring of R by a prime ideal has a zero Jacobson radical. In every quotient ring, the nilradical is equal to the Jacobson radical.
If M is a free module, or if R is right nonsingular, then the converse is true. A semisimple module is nonsingular if and only if it is a projective module. If R is a right self-injective ring, then () = (), where J(R) is the Jacobson radical of R.
It is trivial to show = (using the basic property =), but we give some alternative methods: [clarification needed] The radical corresponds to the nilradical of the quotient ring = [,] / (), which is the intersection of all prime ideals of the quotient ring. This is contained in the Jacobson radical, which is the intersection of all maximal ...
The fact that A is Artinian simplifies the notion of a Jacobson radical; for an Artinian ring, the Jacobson radical of A is the intersection of all (two-sided) maximal ideals (in contrast, in general, a Jacobson radical is the intersection of all left maximal ideals or the intersection of all right maximal ideals.)
A ring R is left self-injective if the module R R is an injective module. While rings with unity are always projective as modules, they are not always injective as modules. semiperfect A semiperfect ring is a ring R such that, for the Jacobson radical J(R) of R, (1) R/J(R) is semisimple and (2) idempotents lift modulo J(R). semiprimary
This is proven by observing that any nil ideal is contained in the Jacobson radical of the ring, and since the Jacobson radical is a nilpotent ideal (due to the Artinian hypothesis), the result follows. In fact, this can be generalized to right Noetherian rings; this result is known as Levitzky's theorem. [3]