enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobson radical - Wikipedia

    en.wikipedia.org/wiki/Jacobson_radical

    For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements rR such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...

  3. Radical of a ring - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_ring

    If R is commutative, the Jacobson radical always contains the nilradical. If the ring R is a finitely generated Z-algebra, then the nilradical is equal to the Jacobson radical, and more generally: the radical of any ideal I will always be equal to the intersection of all the maximal ideals of R that contain I. This says that R is a Jacobson ring.

  4. Jacobson ring - Wikipedia

    en.wikipedia.org/wiki/Jacobson_ring

    Any field is a Jacobson ring. Any principal ideal domain or Dedekind domain with Jacobson radical zero is a Jacobson ring. In principal ideal domains and Dedekind domains, the nonzero prime ideals are already maximal, so the only thing to check is if the zero ideal is an intersection of maximal ideals.

  5. Nakayama's lemma - Wikipedia

    en.wikipedia.org/wiki/Nakayama's_lemma

    The resulting theorem is sometimes known as the Jacobson–Azumaya theorem. [13] Let J(R) be the Jacobson radical of R. If U is a right module over a ring, R, and I is a right ideal in R, then define U·I to be the set of all (finite) sums of elements of the form u·i, where · is simply the action of R on U. Necessarily, U·I is a submodule of U.

  6. Singular submodule - Wikipedia

    en.wikipedia.org/wiki/Singular_submodule

    If M is a free module, or if R is right nonsingular, then the converse is true. A semisimple module is nonsingular if and only if it is a projective module. If R is a right self-injective ring, then () = (), where J(R) is the Jacobson radical of R.

  7. Radical of an ideal - Wikipedia

    en.wikipedia.org/wiki/Radical_of_an_ideal

    It is trivial to show = (using the basic property =), but we give some alternative methods: [clarification needed] The radical corresponds to the nilradical of the quotient ring = [,] / (), which is the intersection of all prime ideals of the quotient ring. This is contained in the Jacobson radical, which is the intersection of all maximal ...

  8. Ring theory - Wikipedia

    en.wikipedia.org/wiki/Ring_theory

    The concept of the Jacobson radical of a ring; that is, the intersection of all right (left) annihilators of simple right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by ...

  9. Semi-local ring - Wikipedia

    en.wikipedia.org/wiki/Semi-local_ring

    In mathematics, a semi-local ring is a ring for which R/J(R) is a semisimple ring, where J(R) is the Jacobson radical of R. (Lam 2001, p. §20)(Mikhalev & Pilz 2002, p. C.7) The above definition is satisfied if R has a finite number of maximal right ideals (and