Search results
Results from the WOW.Com Content Network
The higher heating value takes into account the latent heat of vaporization of water in the combustion products, and is useful in calculating heating values for fuels where condensation of the reaction products is practical (e.g., in a gas-fired boiler used for space heat). In other words, HHV assumes all the water component is in liquid state ...
The constant volume adiabatic flame temperature is the temperature that results from a complete combustion process that occurs without any work, heat transfer or changes in kinetic or potential energy. Its temperature is higher than in the constant pressure process because no energy is utilized to change the volume of the system (i.e., generate ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
In gas dynamics we are interested in the local relations between pressure, density and temperature, rather than considering a fixed quantity of gas. By considering the density ρ = M / V {\displaystyle \rho =M/V} as the inverse of the volume for a unit mass, we can take ρ = 1 / V {\displaystyle \rho =1/V} in these relations.
In chemistry, the burn rate (or burning rate) is a measure of the linear combustion rate of a compound or substance such as a candle or a solid propellant. It is measured in length over time, such as millimeters per second or inches per second. Among the variables affecting burn rate are pressure and temperature.
The flames caused as a result of a fuel undergoing combustion (burning) Air pollution abatement equipment provides combustion control for industrial processes.. Combustion, or burning, [1] is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke.
The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K). Standard states are defined for various types of substances. For a gas, it is the hypothetical state the gas would assume if it obeyed the ideal gas equation at a
From the equation, the activation energy can be found through the relation = / where A is the pre-exponential factor for the reaction, R is the universal gas constant, T is the absolute temperature (usually in kelvins), and k is the reaction rate coefficient.