enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pinhole camera model - Wikipedia

    en.wikipedia.org/wiki/Pinhole_camera_model

    The geometry of a pinhole camera. Note: the x 1 x 2 x 3 coordinate system in the figure is left-handed, that is the direction of the OZ axis is in reverse to the system the reader may be used to. The geometry related to the mapping of a pinhole camera is illustrated in the figure. The figure contains the following basic objects:

  3. Homography (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Homography_(computer_vision)

    Geometrical setup for homography: stereo cameras O 1 and O 2 both pointed at X in epipolar geometry. Drawing from Neue Konstruktionen der Perspektive und Photogrammetrie by Hermann Guido Hauck (1845 — 1905) In the field of computer vision, any two images of the same planar surface in space are related by a homography (assuming a pinhole ...

  4. Pinhole camera - Wikipedia

    en.wikipedia.org/wiki/Pinhole_camera

    A pinhole camera is a simple camera without a lens but with a tiny aperture (the so-called pinhole)—effectively a light-proof box with a small hole in one side. Light from a scene passes through the aperture and projects an inverted image on the opposite side of the box, which is known as the camera obscura effect.

  5. Camera resectioning - Wikipedia

    en.wikipedia.org/wiki/Camera_resectioning

    Camera resectioning is the process of estimating the parameters of a pinhole camera model approximating the camera that produced a given photograph or video; it determines which incoming light ray is associated with each pixel on the resulting image. Basically, the process determines the pose of the pinhole camera.

  6. Epipolar geometry - Wikipedia

    en.wikipedia.org/wiki/Epipolar_geometry

    The epipolar geometry then describes the relation between the two resulting views. Epipolar geometry is the geometry of stereo vision. When two cameras view a 3D scene from two distinct positions, there are a number of geometric relations between the 3D points and their projections onto the 2D images that lead to constraints between the image ...

  7. Triangulation (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(computer...

    In the following, it is assumed that triangulation is made on corresponding image points from two views generated by pinhole cameras. The ideal case of epipolar geometry. A 3D point x is projected onto two camera images through lines (green) which intersect with each camera's focal point, O 1 and O 2. The resulting image points are y 1 and y 2.

  8. Camera matrix - Wikipedia

    en.wikipedia.org/wiki/Camera_matrix

    The camera matrix is sometimes referred to as a canonical form. So far all points in the 3D world have been represented in a camera centered coordinate system, that is, a coordinate system which has its origin at the camera center (the location of the pinhole of a pinhole camera). In practice however, the 3D points may be represented in terms ...

  9. Pose (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Pose_(computer_vision)

    Analytic or geometric methods: Given that the image sensor (camera) is calibrated and the mapping from 3D points in the scene and 2D points in the image is known. If also the geometry of the object is known, it means that the projected image of the object on the camera image is a well-known function of the object's pose.