enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    We define the final permutation matrix as the identity matrix which has all the same rows swapped in the same order as the matrix while it transforms into the matrix . For our matrix A ( n − 1 ) {\displaystyle A^{(n-1)}} , we may start by swapping rows to provide the desired conditions for the n-th column.

  3. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  5. Permanent (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Permanent_(mathematics)

    In linear algebra, the permanent of a square matrix is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix. [1] Both are special cases of a more general function of a matrix called the immanant.

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  7. Matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Matrix_analysis

    In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...

  8. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation , the object remains unchanged by the transformation.

  9. Matrix equivalence - Wikipedia

    en.wikipedia.org/wiki/Matrix_equivalence

    In linear algebra, two rectangular m-by-n matrices A and B are called equivalent if = for some invertible n-by-n matrix P and some invertible m-by-m matrix Q.Equivalent matrices represent the same linear transformation V → W under two different choices of a pair of bases of V and W, with P and Q being the change of basis matrices in V and W respectively.