Search results
Results from the WOW.Com Content Network
In particle physics, the doublet–triplet (splitting) problem is a problem of some Grand Unified Theories, such as SU(5), SO(10), and . Grand unified theories predict Higgs bosons (doublets of S U ( 2 ) {\displaystyle SU(2)} ) arise from representations of the unified group that contain other states, in particular, states that are triplets of ...
Unfortunately, this same 10 also contains triplets. The masses of the doublets have to be stabilized at the electroweak scale, which is many orders of magnitude smaller than the GUT scale whereas the triplets have to be really heavy in order to prevent triplet-mediated proton decays. See doublet-triplet splitting problem.
The caveat of this is that since the Higgs field is an SU(2) doublet, the remaining part, an SU(3) triplet, must be some new field - usually called D or T. This new scalar would be able to generate proton decay as well and, assuming the most basic Higgs vacuum alignment, would be massless so allowing the process at very high rates.
The triplet consists of three states with spin components +1, 0 and –1 along the direction of the total orbital angular momentum, which is also 1 as indicated by the letter P. The total angular momentum quantum number J can vary from L+S = 2 to L–S = 0 in integer steps, so that J = 2, 1 or 0.
As in diboron, these two unpaired electrons have the same spin in the ground state, which is a paramagnetic diradical triplet oxygen. The first excited state has both HOMO electrons paired in one orbital with opposite spins, and is known as singlet oxygen. MO diagram of dioxygen triplet ground state
In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2. Quantum systems with two possible states are sometimes called two-level systems .
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
The ability of positronium to form both singlet and triplet states is described mathematically by saying that the product of two doublet representations (meaning the electron and positron, which are both spin-1/2 doublets) can be decomposed into the sum of an adjoint representation (the triplet or spin 1 state) and a trivial representation (the ...