Search results
Results from the WOW.Com Content Network
A logarithmically convex function f is a convex function since it is the composite of the increasing convex function and the function , which is by definition convex. However, being logarithmically convex is a strictly stronger property than being convex.
A function (in black) is convex if and only if the region above its graph (in green) is a convex set. A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex
A log-concave function is also quasi-concave. This follows from the fact that the logarithm is monotone implying that the superlevel sets of this function are convex. [1] Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold.
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The logarithm of a characteristic function is a cumulant generating function, which is useful for finding cumulants; some instead define the cumulant generating function as the logarithm of the moment-generating function, and call the logarithm of the characteristic function the second cumulant generating function.
An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.