Search results
Results from the WOW.Com Content Network
The convolution of two finite sequences is defined by extending the sequences to finitely supported functions on the set of integers. When the sequences are the coefficients of two polynomials, then the coefficients of the ordinary product of the two polynomials are the convolution of the original two
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).
In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).
Visual comparison of convolution, cross-correlation and autocorrelation.For the operations involving function f, and assuming the height of f is 1.0, the value of the result at 5 different points is indicated by the shaded area below each point.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Fig 5 is an example of piecewise convolution, using both methods 2 (in blue) and 3 (red dots). A sine function is created by computing the Discrete Hilbert transform of a cosine function, which was processed in four overlapping segments, and pieced back together.
Above, denotes the support of a function f (i.e., the closure of the complement of f-1 (0)) and and denote the infimum and supremum. This theorem essentially states that the well-known inclusion supp φ ∗ ψ ⊂ supp φ + supp ψ {\displaystyle \operatorname {supp} \varphi \ast \psi \subset \operatorname {supp} \varphi ...
The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution).