enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The convolution of two finite sequences is defined by extending the sequences to finitely supported functions on the set of integers. When the sequences are the coefficients of two polynomials, then the coefficients of the ordinary product of the two polynomials are the convolution of the original two

  3. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  4. Convex conjugate - Wikipedia

    en.wikipedia.org/wiki/Convex_conjugate

    In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).

  5. Cross-correlation - Wikipedia

    en.wikipedia.org/wiki/Cross-correlation

    Visual comparison of convolution, cross-correlation and autocorrelation.For the operations involving function f, and assuming the height of f is 1.0, the value of the result at 5 different points is indicated by the shaded area below each point.

  6. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  7. Hilbert transform - Wikipedia

    en.wikipedia.org/wiki/Hilbert_transform

    Fig 5 is an example of piecewise convolution, using both methods 2 (in blue) and 3 (red dots). A sine function is created by computing the Discrete Hilbert transform of a cosine function, which was processed in four overlapping segments, and pieced back together.

  8. Titchmarsh convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Titchmarsh_convolution_theorem

    Above, denotes the support of a function f (i.e., the closure of the complement of f-1 (0)) and and denote the infimum and supremum. This theorem essentially states that the well-known inclusion supp ⁡ φ ∗ ψ ⊂ supp ⁡ φ + supp ⁡ ψ {\displaystyle \operatorname {supp} \varphi \ast \psi \subset \operatorname {supp} \varphi ...

  9. Cauchy product - Wikipedia

    en.wikipedia.org/wiki/Cauchy_product

    The Cauchy product may apply to infinite series [1] [2] or power series. [3] [4] When people apply it to finite sequences [5] or finite series, that can be seen merely as a particular case of a product of series with a finite number of non-zero coefficients (see discrete convolution).