enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    This ensures that a two-dimensional convolution will be able to be performed by a one-dimensional convolution operator as the 2D filter has been unwound to a 1D filter with gaps of zeroes separating the filter coefficients. One-Dimensional Filtering Strip after being Unwound. Assuming that some-low pass two-dimensional filter was used, such as:

  3. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.

  4. Prewitt operator - Wikipedia

    en.wikipedia.org/wiki/Prewitt_operator

    where here denotes the 2-dimensional convolution operation. Since the Prewitt kernels can be decomposed as the products of an averaging and a differentiation kernel, they compute the gradient with smoothing. Therefore, it is a separable filter. For example, can be written as

  5. Separable filter - Wikipedia

    en.wikipedia.org/wiki/Separable_filter

    Another two-dimensional ... notable example of a separable filter is the Gaussian blur whose performance can be greatly improved the bigger the convolution ...

  6. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  7. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  8. Image derivative - Wikipedia

    en.wikipedia.org/wiki/Image_derivative

    Image derivatives can be computed by using small convolution filters of size 2 × 2 or 3 × 3, such as the Laplacian, Sobel, Roberts and Prewitt operators. [1] However, a larger mask will generally give a better approximation of the derivative and examples of such filters are Gaussian derivatives [2] and Gabor filters. [3]

  9. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    Two-dimensional convolution coefficients [ edit ] Two-dimensional smoothing and differentiation can also be applied to tables of data values, such as intensity values in a photographic image which is composed of a rectangular grid of pixels.