Search results
Results from the WOW.Com Content Network
Thus none of the three placements are entirely satisfactory, although group 1 is the most common placement (if one is chosen) because of the electron configuration and the fact that the hydron is by far the most important of all monatomic hydrogen species, being the foundation of acid-base chemistry. [161] As an example of hydrogen's unorthodox ...
In chemistry, an alkali (/ ˈ æ l k ə l aɪ /; from the Arabic word al-qāly, القلوي) is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0.
The difference between a basic salt and an alkali is that an alkali is the soluble hydroxide compound of an alkali metal or an alkaline earth metal. A basic salt is any salt that hydrolyzes to form a basic solution. Another definition of a basic salt would be a salt that contains amounts of both hydroxide and other anions. White lead is an ...
Strong acids and bases are compounds that are essentially fully dissociated in water. This means that in an acidic solution, the concentration of hydrogen ions (H+) can be considered equal to the concentration of the acid. Similarly, in a basic solution, the concentration of hydroxide ions (OH-) can be considered equal to the concentration of ...
The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). [ 1 ] The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure .
An example that illustrates the problem is shown in Baes & Mesmer, p. 119. [1] A trimeric species must be formed from a chemical reaction of a dimer with a monomer, with the implication that the value of the stability constant of the dimer must be "known", having been determined using separate experimental data.
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
For example the value of log K ≈ −6 has been estimated for hydrogen chloride in aqueous solution at room temperature. [1] A chemical compound may behave as a strong acid in solution when its concentration is low and as a weak acid when its concentration is very high. Sulfuric acid is an example of such a compound.