Search results
Results from the WOW.Com Content Network
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. [1] The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation.
A large number of hierarchies of evidence have been proposed. Similar protocols for evaluation of research quality are still in development. So far, the available protocols pay relatively little attention to whether outcome research is relevant to efficacy (the outcome of a treatment performed under ideal conditions) or to effectiveness (the outcome of the treatment performed under ordinary ...
Example of a Bayesian analysis table for a female's risk for a disease based on the knowledge that the disease is present in her siblings but not in her parents or any of her four children. Based solely on the status of the subject's siblings and parents, she is equally likely to be a carrier as to be a non-carrier (this likelihood is denoted ...
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
The GRADE approach separates recommendations following from an evaluation of the evidence as strong or weak. A recommendation to use, or not use an option (e.g. an intervention), should be based on the trade-offs between desirable consequences of following a recommendation on the one hand, and undesirable consequences on the other.
Arthur P. Dempster at the Workshop on Theory of Belief Functions (Brest, 1 April 2010).. The theory of belief functions, also referred to as evidence theory or Dempster–Shafer theory (DST), is a general framework for reasoning with uncertainty, with understood connections to other frameworks such as probability, possibility and imprecise probability theories.
In statistics, the conditional probability table (CPT) is defined for a set of discrete and mutually dependent random variables to display conditional probabilities of a single variable with respect to the others (i.e., the probability of each possible value of one variable if we know the values taken on by the other variables).