enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.

  3. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  4. Relativistic beaming - Wikipedia

    en.wikipedia.org/wiki/Relativistic_beaming

    Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.

  5. Relativistic aberration - Wikipedia

    en.wikipedia.org/wiki/Relativistic_aberration

    A consequence is that a forward observer should normally be expected to intercept a greater proportion of the object's light than a rearward one; this concentration of light in the object's forward direction is referred to as the "searchlight" or "headlight" effect. Light from a relativistic source becomes more forward directed and Doppler ...

  6. Bondi k-calculus - Wikipedia

    en.wikipedia.org/wiki/Bondi_k-calculus

    In the k-calculus methodology, distances are measured using radar.An observer sends a radar pulse towards a target and receives an echo from it. The radar pulse (which travels at , the speed of light) travels a total distance, there and back, that is twice the distance to the target, and takes time , where and are times recorded by the observer's clock at transmission and reception of the ...

  7. Radial velocity - Wikipedia

    en.wikipedia.org/wiki/Radial_Velocity

    However, due to relativistic and cosmological effects over the great distances that light typically travels to reach the observer from an astronomical object, this measure cannot be accurately transformed to a geometric radial velocity without additional assumptions about the object and the space between it and the observer. [3]

  8. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.

  9. Electrophoretic light scattering - Wikipedia

    en.wikipedia.org/wiki/Electrophoretic_light...

    The frequency of light scattered by particles undergoing electrophoresis is shifted by the amount of the Doppler effect, from that of the incident light, :. The shift can be detected by means of heterodyne optics in which the scattering light is mixed with the reference light.