Search results
Results from the WOW.Com Content Network
Hyperpolarization of the hair cell, which occurs when potassium leaves the cell, is also important, as it stops the influx of calcium and therefore stops the fusion of vesicles at the ribbon synapses. Thus, as elsewhere in the body, the transduction is dependent on the concentration and distribution of ions. [7]
This highly varied strip of epithelial cells allows for transduction of auditory signals into nerve impulses' action potential. [1] Transduction occurs through vibrations of structures in the inner ear causing displacement of cochlear fluid and movement of hair cells at the organ of Corti to produce electrochemical signals. [2]
[1] [2] Mechanotransduction is thought to occur at the site of the tip links, which connect to spring-gated ion channels. [3] These channels are cation-selective transduction channels that allow potassium and calcium ions to enter the hair cell from the endolymph that bathes its apical end. When the hair cells are deflected toward the ...
The mTOR pathway is downstream of Myc/Notch 1 activation and is required in proliferation and supporting cell-to-hair cell transdifferentiation in the adult cochlea. These regenerated hair cells have functional signal transduction channels, which are necessary for sensory processing.
There are two types of hair cells specific to the auditory system; inner and outer hair cells. Inner hair cells are the mechanoreceptors for hearing: they transduce the vibration of sound into electrical activity in nerve fibers, which is transmitted to the brain. Outer hair cells are a motor structure.
These cilia play important roles in mechanosensation. The current scientific understanding of primary cilia organelles views them as "sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation."
The stimulation of a mechanoreceptor causes mechanically sensitive ion channels to open and produce a transduction current that changes the membrane potential of the cell. [10] Typically the mechanical stimulus gets filtered in the conveying medium before reaching the site of mechanotransduction. [ 11 ]
The olivocochlear system is a component of the auditory system involved with the descending control of the cochlea.Its nerve fibres, the olivocochlear bundle (OCB), form part of the vestibulocochlear nerve (VIIIth cranial nerve, also known as the auditory-vestibular nerve), and project from the superior olivary complex in the brainstem to the cochlea.