enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Nico Nagelkerke - Wikipedia

    en.wikipedia.org/wiki/Nico_Nagelkerke

    Nicolaas Jan Dirk "Nico" Nagelkerke (born 1951) is a Dutch biostatistician and epidemiologist. As of 2012, he was a professor of biostatistics at the United Arab Emirates University . He previously taught at the University of Leiden in the Netherlands .

  5. Talk:Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Talk:Coefficient_of...

    Nagelkerke's pseudo-R^2 is a scaled version of Cox and Snell's R^2 that can be obtained from a generalized linear model when dealing with binary responses. When using binary responses, a better coefficient of determination has been suggested in genetic profile analyses (see below).

  6. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...

  7. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    If that sum of squares is divided by n, the number of observations, the result is the mean of the squared residuals. Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n , where df is the number of degrees of freedom ( n ...

  8. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  9. Coefficient of multiple correlation - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_multiple...

    The coefficient of multiple correlation is known as the square root of the coefficient of determination, but under the particular assumptions that an intercept is included and that the best possible linear predictors are used, whereas the coefficient of determination is defined for more general cases, including those of nonlinear prediction and those in which the predicted values have not been ...