enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    The equivalent voltage V th is the voltage obtained at terminals A–B of the network with terminals A–B open circuited. The equivalent resistance R th is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced ...

  3. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    To find the Norton equivalent of a linear time-invariant circuit, the Norton current I no is calculated as the current flowing at the two terminals A and B of the original circuit that is now short (zero impedance between the terminals). The Norton resistance R no is found by calculating the output voltage V o produced at A and B with no ...

  4. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.

  5. Network analysis (electrical circuits) - Wikipedia

    en.wikipedia.org/wiki/Network_analysis...

    Most analysis methods calculate the voltage and current values for static networks, which are circuits consisting of memoryless components only but have difficulties with complex dynamic networks. In general, the equations that describe the behaviour of a dynamic circuit are in the form of a differential-algebraic system of equations (DAEs ...

  6. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  7. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    where A, B and C are the so-called Steinhart–Hart coefficients. This equation is used to calibrate thermistors. Extrinsic (doped) semiconductors have a far more complicated temperature profile. As temperature increases starting from absolute zero they first decrease steeply in resistance as the carriers leave the donors or acceptors.

  8. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  9. Equivalent circuit - Wikipedia

    en.wikipedia.org/wiki/Equivalent_circuit

    In electrical engineering, an equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit. Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis . [ 1 ]