enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.

  3. The Story of Maths - Wikipedia

    en.wikipedia.org/wiki/The_Story_of_Maths

    Galois had discovered new techniques to tell whether certain equations could have solutions or not. The symmetry of certain geometric objects was the key. Galois' work was picked up by André Weil who built algebraic geometry, a whole new language. Weil's work connected number theory, algebra, topology and geometry.

  4. List of algebraic geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_algebraic_geometry...

    Algebraic variety. Hypersurface; Quadric (algebraic geometry) Dimension of an algebraic variety; Hilbert's Nullstellensatz; Complete variety; Elimination theory; Gröbner basis; Projective variety; Quasiprojective variety; Canonical bundle; Complete intersection; Serre duality; Spaltenstein variety; Arithmetic genus, geometric genus, irregularity

  5. Category:Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Algebraic_geometry

    Algebraic geometry is the place where the algebra involved in solving systems of simultaneous multivariable polynomial equations meets the geometry of curves, surfaces, and higher dimensional algebraic varieties.

  6. Unifying theories in mathematics - Wikipedia

    en.wikipedia.org/wiki/Unifying_theories_in...

    A well-known example was the development of analytic geometry, which in the hands of mathematicians such as Descartes and Fermat showed that many theorems about curves and surfaces of special types could be stated in algebraic language (then new), each of which could then be proved using the same techniques. That is, the theorems were very ...

  7. Riemann surface - Wikipedia

    en.wikipedia.org/wiki/Riemann_surface

    There are several equivalent definitions of a Riemann surface. A Riemann surface X is a connected complex manifold of complex dimension one. This means that X is a connected Hausdorff space that is endowed with an atlas of charts to the open unit disk of the complex plane: for every point x ∈ X there is a neighbourhood of x that is homeomorphic to the open unit disk of the complex plane, and ...

  8. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically. [23] Analytic geometry allows the study of curves unrelated to circles and lines.

  9. Éléments de géométrie algébrique - Wikipedia

    en.wikipedia.org/wiki/Éléments_de_géométrie...

    The Éléments de géométrie algébrique (EGA; from French: "Elements of Algebraic Geometry") by Alexander Grothendieck (assisted by Jean Dieudonné) is a rigorous treatise on algebraic geometry that was published (in eight parts or fascicles) from 1960 through 1967 by the Institut des Hautes Études Scientifiques.