Search results
Results from the WOW.Com Content Network
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The rows of Pascal's triangle are conventionally enumerated starting with row = at the top (the 0th row). The entries in each row are numbered from the left beginning with = and are usually staggered relative to the numbers in the adjacent rows. The triangle may be constructed in the following manner: In row 0 (the topmost row), there is a ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The powers of two that divide the central binomial coefficients are given by Gould's sequence, whose nth element is the number of odd integers in row n of Pascal's triangle. Squaring the generating function gives 1 1 − 4 x = ( ∑ n = 0 ∞ ( 2 n n ) x n ) ( ∑ n = 0 ∞ ( 2 n n ) x n ) . {\displaystyle {\frac {1}{1-4x}}=\left(\sum _{n=0 ...
1000th row of Pascal's triangle, arranged vertically, with grey-scale representations of decimal digits of the coefficients, right-aligned. The left boundary of the image corresponds roughly to the graph of the logarithm of the binomial coefficients, and illustrates that they form a log-concave sequence .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Pascal's pyramid's first five layers. Each face (orange grid) is Pascal's triangle. Arrows show derivation of two example terms. In mathematics, Pascal's pyramid is a three-dimensional arrangement of the trinomial numbers, which are the coefficients of the trinomial expansion and the trinomial distribution. [1]
Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then