enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    The layout of a ripple-carry adder is simple, which allows fast design time; however, the ripple-carry adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the previous full adder. The gate delay can easily be calculated by inspection of the full adder circuit. Each full adder requires three levels ...

  3. Early completion - Wikipedia

    en.wikipedia.org/wiki/Early_completion

    A ripple carry adder is a simple adder circuit, but slow because the carry signal has to propagate through each stage of the adder: This diagram shows a 5-bit ripple carry adder in action. There is a five-stage long carry path, so every time two numbers are added with this adder, it needs to wait for the carry to propagate through all five stages.

  4. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    The carry-select adder generally consists of ripple-carry adders and a multiplexer.Adding two n-bit numbers with a carry-select adder is done with two adders (therefore two ripple-carry adders), in order to perform the calculation twice, one time with the assumption of the carry-in being zero and the other assuming it will be one.

  5. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    A partial full adder, with propagate and generate outputs. Logic gate implementation of a 4-bit carry lookahead adder. A block diagram of a 4-bit carry lookahead adder. For each bit in a binary sequence to be added, the carry-lookahead logic will determine whether that bit pair will generate a carry or propagate a carry.

  6. Lookahead carry unit - Wikipedia

    en.wikipedia.org/wiki/Lookahead_carry_unit

    By combining 4 CLAs and an LCU together creates a 16-bit adder. Four of these units can be combined to form a 64-bit adder. An additional (second-level) LCU is needed that accepts the propagate and generate from each LCU and the four carry outputs generated by the second-level LCU are fed into the first-level LCUs.

  7. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    A carry-skip adder [nb 1] (also known as a carry-bypass adder) is an adder implementation that improves on the delay of a ripple-carry adder with little effort compared to other adders. The improvement of the worst-case delay is achieved by using several carry-skip adders to form a block-carry-skip adder.

  8. Brent–Kung adder - Wikipedia

    en.wikipedia.org/wiki/Brent–Kung_adder

    The Brent–Kung adder is a parallel prefix adder (PPA) form of carry-lookahead adder (CLA). Proposed by Richard Peirce Brent and Hsiang Te Kung in 1982 it introduced higher regularity to the adder structure and has less wiring congestion leading to better performance and less necessary chip area to implement compared to the Kogge–Stone adder (KSA).

  9. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.