Search results
Results from the WOW.Com Content Network
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
Classic combinatorial search problems include solving the eight queens puzzle or evaluating moves in games with a large game tree, such as reversi or chess. A study of computational complexity theory helps to motivate combinatorial search. Combinatorial search algorithms are typically concerned with problems that are NP-hard. Such problems are ...
Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra. Algebraic combinatorics has come to be seen more expansively as an area of mathematics where the ...
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.
Journal of Combinatorial Mathematics and Combinatorial Computing; ... The Two Cultures of Mathematics by W. T. Gowers, article on problem solving vs theory building
In combinatorics, stars and bars (also called "sticks and stones", [1] "balls and bars", [2] and "dots and dividers" [3]) is a graphical aid for deriving certain combinatorial theorems. It can be used to solve many simple counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins. [4]
The knapsack problem is the following problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...