Search results
Results from the WOW.Com Content Network
Freezing[1] or frost occurs when the air temperature falls below the freezing point of water (0 °C, 32 °F, 273 K). This is usually measured at the height of 1.2 metres above the ground surface. There exist some scales defining several degrees of frost severity (from "slight" to "very severe") but they depend on location thus the usual ...
Degree of frost. 0 °C = 32 °F. A degree of frost is a non-standard unit of measure for air temperature meaning degrees below melting point (also known as "freezing point") of water (0 degrees Celsius or 32 degrees Fahrenheit). "Degree" in this case can refer to degree Celsius or degree Fahrenheit. When based on Celsius, 0 degrees of frost is ...
The value of −240 °C, or "431 divisions [in Fahrenheit's thermometer] below the cold of freezing water" [18] was published by George Martine in 1740. This close approximation to the modern value of −273.15 °C [ 1 ] for the zero of the air thermometer was further improved upon in 1779 by Johann Heinrich Lambert , who observed that −270 ...
A temperature interval of 1 °F was equal to an interval of 5 ⁄ 9 degrees Celsius. With the Fahrenheit and Celsius scales now both defined by the kelvin, this relationship was preserved, a temperature interval of 1 °F being equal to an interval of 5 ⁄ 9 K and of 5 ⁄ 9 °C. The Fahrenheit and Celsius scales intersect numerically at −40 ...
Frost is a thin layer of ice on a solid surface, which forms from water vapor that deposits onto a freezing surface. Frost forms when the air contains more water vapor than it can normally hold at a specific temperature. The process is similar to the formation of dew, except it occurs below the freezing point of water typically without crossing ...
The freezing level, or 0 °C (zero-degree) isotherm, represents the altitude in which the temperature is at 0 °C (the freezing point of water) in a free atmosphere (i.e. allowing reflection of the sun by snow, icing conditions, etc.). Any given measure is valid for only a short period of time, often less than a day as variations in wind ...
The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. [1]
This corresponds to −273.15 °C on the Celsius scale, −459.67 °F on the Fahrenheit scale, and 0.00 °R on the Rankine scale. Since temperature relates to the thermal energy held by an object or a sample of matter, which is the kinetic energy of the random motion of the particle constituents of matter, an object will have less thermal ...