enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    1.365. In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is denoted by γ ...

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution ...

  4. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:

  5. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Download QR code; Print/export Download as PDF; Printable version; ... is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It ...

  6. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    m = mass of each molecule (all molecules are identical in kinetic theory), γ (p) = Lorentz factor as function of momentum (see below) Ratio of thermal to rest mass-energy of each molecule: θ = k B T / m c 2 {\displaystyle \theta =k_ {\text {B}}T/mc^ {2}} K2 is the modified Bessel function of the second kind.

  7. Richmann's law - Wikipedia

    en.wikipedia.org/wiki/Richmann's_law

    Richmann's law. Richmann's law, [1][2] sometimes referred to as Richmann's rule, [3] Richmann's mixing rule, [4] Richmann's rule of mixture[5] or Richmann's law of mixture, [6] is a physical law for calculating the mixing temperature when pooling multiple bodies. [5] It is named after the Baltic German physicist Georg Wilhelm Richmann, who ...

  8. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    t. e. Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. [1] The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is an extensive property.

  9. Rüchardt experiment - Wikipedia

    en.wikipedia.org/wiki/Rüchardt_Experiment

    The Rüchardt experiment, [1][2][3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for ...