enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to; A linear inequality looks exactly like a linear equation, with the inequality sign ...

  3. Farkas' lemma - Wikipedia

    en.wikipedia.org/wiki/Farkas'_lemma

    In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas. [1] Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization (alternatively ...

  4. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    Poincaré inequality. In mathematics, the Poincaré inequality[1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition. Such bounds are of great importance in the ...

  6. Inequation - Wikipedia

    en.wikipedia.org/wiki/Inequation

    Inequation. Mathematical statement that two values are not equal. In mathematics, an inequation is a statement that an inequality holds between two values. [1][2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.

  7. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    Mathematical inequality relating inner products and norms. The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) [1][2][3][4] is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely ...

  8. Minkowski inequality - Wikipedia

    en.wikipedia.org/wiki/Minkowski_inequality

    In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed vector spaces.Let be a measure space, let < and let and be elements of (). Then + is in (), and we have the triangle inequality ‖ + ‖ ‖ ‖ + ‖ ‖ with equality for < < if and only if and are positively linearly dependent; that is, = for some or =

  9. Hölder's inequality - Wikipedia

    en.wikipedia.org/wiki/Hölder's_inequality

    Hölder's inequality. In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. Hölder's inequality — Let (S, Σ, μ) be a measure space and let p, q ∈ [1, ∞] with 1/p + 1/q = 1. Then for all measurable real - or complex ...