enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.

  3. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  4. Square root of a 2 by 2 matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix

    In many cases, such a matrix R can be obtained by an explicit formula. Square roots that are not the all-zeros matrix come in pairs: if R is a square root of M, then −R is also a square root of M, since (−R)(−R) = (−1)(−1)(RR) = R 2 = M. A 2×2 matrix with two distinct nonzero eigenvalues has four square roots.

  5. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...

  6. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  7. Dieudonné determinant - Wikipedia

    en.wikipedia.org/wiki/Dieudonné_determinant

    In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by Dieudonné ( 1943 ). If K is a division ring, then the Dieudonné determinant is a group homomorphism from the group GL n ( K ) of invertible n -by- n matrices over K onto the ...

  8. Subsidy Scorecards: University of Arkansas

    projects.huffingtonpost.com/projects/ncaa/...

    SOURCE: Integrated Postsecondary Education Data System, University of Arkansas (2014, 2013, 2012, 2011, 2010).Read our methodology here.. HuffPost and The Chronicle examined 201 public D-I schools from 2010-2014.

  9. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    An invertible matrix with entries in the integers (integer matrix) Necessarily the determinant is +1 or −1. Unipotent matrix: A square matrix with all eigenvalues equal to 1. Equivalently, A − I is nilpotent. See also unipotent group. Unitary matrix: A square matrix whose inverse is equal to its conjugate transpose, A −1 = A *. Totally ...