Search results
Results from the WOW.Com Content Network
In computer science, type conversion, [1] [2] type casting, [1] [3] type coercion, [3] and type juggling [4] [5] are different ways of changing an expression from one data type to another. An example would be the conversion of an integer value into a floating point value or its textual representation as a string , and vice versa.
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Minifloats (in Survey of Floating-Point Formats) OpenEXR site; Half precision constants from D3DX; OpenGL treatment of half precision; Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating ...
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
It was designed to support a 32-bit "single precision" format and a 64-bit "double-precision" format for encoding and interchanging floating-point numbers. The extended format was designed not to store data at higher precision, but rather to allow for the computation of temporary double results more reliably and accurately by minimising ...
convert a double to a float: d2i 8e 1000 1110 value → result convert a double to an int d2l 8f 1000 1111 value → result convert a double to a long dadd 63 0110 0011 value1, value2 → result add two doubles daload 31 0011 0001 arrayref, index → value load a double from an array dastore 52 0101 0010 arrayref, index, value →
For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0.