enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Duality gap - Wikipedia

    en.wikipedia.org/wiki/Duality_gap

    In optimization problems in applied mathematics, the duality gap is the difference between the primal and dual solutions. If is the optimal dual value and is the optimal primal value then the duality gap is equal to . This value is always greater than or equal to 0 (for minimization problems).

  3. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.

  4. List of dualities - Wikipedia

    en.wikipedia.org/wiki/List_of_dualities

    In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.

  5. Perturbation function - Wikipedia

    en.wikipedia.org/wiki/Perturbation_function

    The duality gap is the difference of the right and left hand side of the inequality (,) (,),where is the convex conjugate in both variables. [3] [4]For any choice of perturbation function F weak duality holds.

  6. Slater's condition - Wikipedia

    en.wikipedia.org/wiki/Slater's_condition

    In mathematics, Slater's condition (or Slater condition) is a sufficient condition for strong duality to hold for a convex optimization problem, named after Morton L. Slater. [1] Informally, Slater's condition states that the feasible region must have an interior point (see technical details below).

  7. Weak duality - Wikipedia

    en.wikipedia.org/wiki/Weak_duality

    In applied mathematics, weak duality is a concept in optimization which states that the duality gap is always greater than or equal to 0. This means that for any minimization problem, called the primal problem, the solution to the primal problem is always greater than or equal to the solution to the dual maximization problem.

  8. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    In mathematics, engineering, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete:

  9. Convex conjugate - Wikipedia

    en.wikipedia.org/wiki/Convex_conjugate

    In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).