Search results
Results from the WOW.Com Content Network
The endodermis is the boundary between the cortex and the stele. In many seedless plants, such as ferns, the endodermis is a distinct layer of cells immediately outside the vascular cylinder (stele) in roots and shoots. In most seed plants, especially woody types, the endodermis is present in roots but not in stems.
One of the main functions of the root cortex is to serve as a storage area for reserve foods. [4] The innermost layer of the cortex in the roots of vascular plants is the endodermis. The endodermis is responsible for storing starch as well as regulating the transport of water, ions and plant hormones. [2]
The discovery of the Casparian strip dates back to the mid-19th century, and advances in the understanding of the endodermis of plant roots. [15] In 1865, the German botanist Robert Caspary first described the endodermis of the root of plants, found that its cell wall was thickened, and named it Schuchtzscheide.
Roots are specialized for the uptake of water, nutrients (including ions for proper function). [12] Similar to the endodermis, the exodermis contains very compact cells and is surrounded by a Casparian band, two features which are used to restrict the flow of water to a symplastic fashion (through the cytoplasm) rather than apoplastic fashion which (through the cell wall) flow through passages ...
Endoderm is the innermost of the three primary germ layers in the very early embryo.The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). [1] Cells migrating inward along the archenteron form the inner layer of the gastrula, which develops into the endoderm.
Sclerenchyma is the tissue which makes the plant hard and stiff. Sclerenchyma is the supporting tissue in plants. Two types of sclerenchyma cells exist: fibers cellular and sclereids. Their cell walls consist of cellulose, hemicellulose, and lignin. Sclerenchyma cells are the principal supporting cells in plant tissues that have ceased elongation.
In plants undergoing secondary growth, the pericycle contributes to the vascular cambium often diverging into a cork cambium. [ citation needed ] In angiosperms certain molecules within the endodermis and the surrounding vasculature are sent to the pericycle which promotes the growth of the root meristems .
Some animals, like cnidarians, produce two germ layers (the ectoderm and endoderm) making them diploblastic. Other animals such as bilaterians produce a third layer (the mesoderm) between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal's tissues and organs through the process of organogenesis.