Search results
Results from the WOW.Com Content Network
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
In chemistry, the decay technique is a method to generate chemical species such as radicals, carbocations, and other potentially unstable covalent structures by radioactive decay of other compounds. For example, decay of a tritium -labeled molecule yields an ionized helium atom, which might then break off to leave a cationic molecular fragment.
It was the fifth radioactive element to be discovered, after uranium, thorium, radium, and polonium. [48] [49] [50] In 1899, Pierre and Marie Curie observed that the gas emitted by radium remained radioactive for a month. [51] Later that year, Rutherford and Owens noticed variations when trying to measure radiation from thorium oxide. [47]
For this reason, at the moment of reactor shutdown, decay heat will be about 7% of the previous core power if the reactor has had a long and steady power history. About 1 hour after shutdown, the decay heat will be about 1.5% of the previous core power. After a day, the decay heat falls to 0.4%, and after a week it will be 0.2%.
Tritium (from Ancient Greek τρίτος (trítos) 'third') or hydrogen-3 (symbol T or 3 H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.3 years. The tritium nucleus (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and no neutrons, and that of non-radioactive hydrogen ...
One type of natural transmutation observable in the present occurs when certain radioactive elements present in nature spontaneously decay by a process that causes transmutation, such as alpha or beta decay. An example is the natural decay of potassium-40 to argon-40, which forms most of the argon in the air.
The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.
Water subjected to ionizing radiation forms free radicals of hydrogen and hydroxyl, which can recombine to form gaseous hydrogen, oxygen, hydrogen peroxide, hydroxyl radicals, and peroxide radicals. In living organisms, which are composed mostly of water, majority of the damage is caused by the reactive oxygen species , free radicals produced ...