Ads
related to: calculate weight of steel beam
Search results
Results from the WOW.Com Content Network
The dimension of a wide-flange I-beam. In the United States, steel I-beams are commonly specified using the depth and weight of the beam. For example, a "W10x22" beam is approximately 10 in (254 mm) in depth with a nominal height of the I-beam from the outer face of one flange to the outer face of the other flange, and weighs 22 lb/ft (33 kg/m).
ASTM A992 steel is a structural steel alloy often used in the US for steel wide-flange and I beams. Like other carbon steels, the density of ASTM A992 steel is approximately 7850 kg/m 3 (0.2836 lb/in 3). ASTM A992 steel has the following minimum mechanical properties, according to ASTM specification A992/A992M.
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
Consider a beam whose cross-sectional area increases in one dimension, e.g. a thin-walled round beam or a rectangular beam whose height but not width is varied. By combining the area and density formulas, we can see that the radius or height of this beam will vary with approximately the inverse of the density for a given mass.
Section Beams are made of steel and they have a specific lengths and shapes like Ɪ-beam, 'L', C-channel and I flanged beam.
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]
The austenizing temperature, the temperature where a steel transforms to an austenite crystal structure, for steel starts at 900 °C (1,650 °F) for pure iron, then, as more carbon is added, the temperature falls to a minimum 724 °C (1,335 °F) for eutectic steel (steel with only .83% by weight of carbon in it).
Ads
related to: calculate weight of steel beam