enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  3. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈɔːrbɪtəl /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

  4. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    In quantum mechanics, the principal quantum number (symbolized n) is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers (from one) making it a discrete variable. Apart from the principal quantum number, the other quantum numbers for bound electrons are the azimuthal ...

  5. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    In quantum mechanics, the azimuthal quantum numberℓ is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron (the others being the ...

  6. Quark model - Wikipedia

    en.wikipedia.org/wiki/Quark_model

    In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks —the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU (3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that ...

  7. Spectroscopic notation - Wikipedia

    en.wikipedia.org/wiki/Spectroscopic_notation

    This notation is used to specify electron configurations and to create the term symbol for the electron states in a multi-electron atom. When writing a term symbol, the above scheme for a single electron's orbital quantum number is applied to the total orbital angular momentum associated to an electron state.

  8. Term symbol - Wikipedia

    en.wikipedia.org/wiki/Term_symbol

    Term symbol. In atomic physics, a term symbol is an abbreviated description of the total spin and orbital angular momentum quantum numbers of the electrons in a multi-electron atom. So while the word symbol suggests otherwise, it represents an actual value of a physical quantity. For a given electron configuration of an atom, its state depends ...

  9. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    Magnetic quantum number. In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number (ml or m[ a ]) distinguishes the orbitals available within a given subshell of an atom.